

SRNE 250V MPPT Charge Controllers for PowerSpout Turbines

Please read this document carefully in conjunction with the PowerSpout Installation manual.

Disclaimer

UNLESS SPECIFICALLY AGREED TO IN WRITING, ECOINNOVATION LIMITED:

(a) MAKES NO WARRANTY AS TO THE ACCURACY, SUFFICIENCY OR SUITABILITY OF ANY TECHNICAL OR OTHER INFORMATION PROVIDED IN ITS DOCUMENTATION.

(b) ASSUMES NO RESPONSIBILITY OR LIABILITY FOR LOSS OR DAMAGE, WHETHER DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL, WHICH MIGHT ARISE OUT OF THE USE OF SUCH INFORMATION. THE USE OF ANY SUCH INFORMATION WILL BE ENTIRELY AT THE USER'S RISK.

Notice of Copyright

A PowerSpout Document Copyright © 2021 All rights reserved

Notice of Trademark PowerSpout – is a USA registered Trademark **Notice of Company Registration** EcoInnovation – is a NZ Registered Limited Company

Revisions history

1.1. New release by ML, BB and Edited by H.P.

Introduction

250v MPPT Power Conversion Equipment (PCE) have been widely used with PowerSpout hydro turbines (for over a decade) since the release of fully featured products such as the <u>Midnight Classic 250V in hydro mode</u> and the <u>250V Victron</u> <u>Smart Solar</u> range. Both these 250v MPPTs have become the benchmark for PowerSpout hydro turbines charging 48v battery banks.

Why do we need a 250V MPPT controller?

To charge a 48V battery through an MPPT controller, you need a hydro turbine operating voltage about 10v higher than the maximum charge voltage of the battery. Battery voltage can reach 60V (for some 48v batteries), so we need 70V operating. Then there is the need to allow for errors in the hydro site data, and the voltage steps we can provide in our PMA options. As such, in practice **we need to target a turbine operating voltage of about 80V** for it to work well for all customers.

Our turbines unloaded and free spinning can produce an open circuit voltage (Voc) up to 3 time higher, in other words as high as 240V. So, an approved solar PV MPPT charge controller rated for 240V or higher can be used to charge 12/24/36/48 volt battery bank via a PowerSpout hydro turbine.

(If you wish to charge a 12 or 24v battery, then common, lower cost 150V MPPTs can be used with a Powerspout turbine operating at 40-50V design output voltage.)

Almost all home-scale off-grid power systems use a 48v battery bank these days, so this is where our focus lies and why we are very interested in recent 250V MPPTs available at lower cost from China. Large leading brands (Midnite and Victron) 250V MPPTs retail from about \$800-1,000US each. The SRNE equivalent retails for 35-50% of this price.

Who is the target market for lower cost 250v MPPT

Lower cost MPPTs are popular with clients on a budget who do not require extra features or such a long warranty cover. They do not need to view all the performance data online for example, if it costs less to buy.

There are some very affordable 5kW hybrid (solar MPPT combined with a 5kW inverter/charger) PCE that are increasingly common globally. You can read about how to use these with PowerSpout turbines <u>here</u> and <u>here</u>.

If you want to use both PV and hydro in such a system, then this 250v MPPT is a good way to do it at an affordable price. You might for example add our budget priced <u>PLT Cube</u> to your system in this manner.

SRNE 250V Model options

Model sizes available:					
Model Number	Output Current rating Amps	Dimensions and weight			
MC4860N25	60	264x188x121mm -3.7kg			
MC48670N25	70	264x188x121mm -3.7kg			
MC48685N25	85	314x259x121mm -5.7kg			
MC486100N25	100	314x259x121mm -5.7kg			

- Click <u>here</u> for the user manual
- Click <u>here</u> for the SRNE brochure
- Click here for the SRNE Modbus protocol manual (geeks only)

There are two physical size options, and it is likely that the 60-70A and the 85-100A options are physically the same, but that the output current rating is limited by software.

The MPPT is sold under several brands such as <u>SRNE</u> and <u>PUYANG</u>. Is it likely that PUYANG buy OEM from SRNE. If you are concerned about the quality of SRNE products, companies like <u>Midnitesolar</u> brand them as their <u>DIY MPPT</u> <u>Series</u> and <u>DIY inverter series</u>. Midnite would not sell them unless they were happy with the quality and performance.

For a single Powerspout hydro turbine application, the 60A version is more than adequate, as it can handle up to 3kW charge rate into a 48V battery.

For continuous 24/7 hydro operation we suggest that they are not operated above 2/3 of their rating, nominally 2kW on a 48v battery (unless external fan cooling is implemented).

No.	Name	No.	Name
1	Liquid crystal display (LCD)	0	RS485 communication interface
2	Bluetooth 4.0BLE module	8	Key
3	Positive interface of battery	9	TTL communication interface
4	Negative interface of battery	10	Battery temperature sampling interface
5	Negative interface of solar panel	1	Battery voltage sampling interface
6	Positive interface of solar panel	12	Relay output interface

Our testing

We tested the MC4860N25 in our test room using output from a PMA driven by a VSD. We also performed a real hydro test on a 1.4kW Powerspout LH hydro turbine.

Parameter	Results	
Can casing be opened or are	Unit is sealed, as the two coils are potted into the	
they sealed	aluminium case lid. Cannot be serviced or repaired.	
Remote meter supplied	Yes, and it is removable. Clear and stable display.	
	One of the best we have seen	
Blue tooth monitoring app	Yes – it works well. Password (135790123) is not	
suppled as standard	provided and difficult to locate online.	
	Bluetooth app has a clean and tidy layout, simple and	
	easy menus to navigate. Includes graphs of historical	
	data up to 2 years.	
	Downside, it needs reconnecting regularly and you	
	cannot easily tell if it is connected or not.	
IEC 62109 compliant	Yes click <u>here</u> to view this very recent	
	certification. This is mandatory in some global	
	markets	
<u>CE certification</u>	Yes	
UL1741 certification	Yes	
<u>IEC62509 certification</u>	Yes	
Test on a real hydro turbine	On a PowerSpout LH hydro downward track test from	
	170 VOC it went to 80% VOC of 117 and then tracked	
	after a further minute to 77V and 18.0A. External	
	meter verified that metering to be accurate.	
	Operation was stable and PCE tracked up or down	
	fine. After watching the display for 20 minutes we did	
	not observe a new Voc track – this is an issue with	
	Victron MPP1 S. It tested a little better than the	
Martin Art 250W	Midnite 250V MPP1.	
voc test at >250v	PLE drops the load and VOL warning on the display.	
	on reducing the voltage to <250v normal operation	
Voltage noting of internal	resumes.	
voltage rating of internal	250V, so a VOC high enough to rupture the capacitor	
capacitors	roplaced	
Load terminals	No	
Battery temperature	Vos	
compensation	105	
Voltage compensation wires	Yes	
Programable relay	Yes – but limited functionality so of little to no use	
Common negative design	Yes	
Display	Yes, clear, accurate and stable	
Manufacture warranty time	3-years Click here for the SRNE warranty	
	statement	
Input short circuit current	70A (for all 250V models) This is a high rating	
rating	On the 60 A version tested the chort circuit rating is	
Tuting	higher than the output rating	
Operational input voltage	Bat $V + 2$ to 180V	
range		

Metal case protective earth	Yes
lug	

Possible applications with this 250V PCE

As previously mentioned, we usually need a 250V charge controller for a 48V battery charging. Other factors to consider in system design are:

- <u>Avoiding overspeed</u> of the turbine when the battery is full. (If unloaded speed exceeds 2,000 rpm then there must be some device to ensure the turbine is kept loaded. This corresponds to net heads above about 40m for PLT, 10m for TRG and 4m for LH turbines.) The turbine can be kept loaded using diversion of power from battery to dump loads or to <u>useful water heating</u> with a <u>Morningstar TS45 or TS60 PWM</u> or more directly using our <u>PowerClamp regulator</u>.
- Very <u>long cable runs</u> from the turbine can be costly at 80V, due to the weight of copper required. Using our PowerClamp regulator allows us to design for 150-180V operation without danger to the 250V MPPT, with much lighter wiring, and this also prevents turbine overspeed.

Turbine Option	Cable load voltage	Runaway RPM	PowerClamp or <u>TS45/60</u> required?
PLT80, PLT	80V	<2000	No – optional only.
Cube 80,			Useful if you wish to harness
TRG80,			surplus power generated.
LH200	100V	<2000	Drawing A
PLT80, PLT	80V	>2000	PowerClamp or Morningstar
Cube 80,			<u>TS45 or TS60 PWM</u>
TRG80,			diversion regulator
LH200	100V	>2000	Drawing B & C
PLT150-180,	150-180V	N/A	PowerClamp must be
PLT Cube			installed to provide over
150-180,			voltage protection
TRG150-			
180,			
LH300-	150-180V	N/A	Drawing D
LH350		-	_

PowerClamp update

EcoInnovation will soon have on the market the PC2 (PowerClamp 2nd generation). In addition to heaters that load the turbine directly, this PC2 will have two **auxiliary relays** to control surplus power diversion via an AC or DC SSR. Clients who have good hydro sites with ample surplus will be able to automatically divert excess power to a useful purpose either at the battery voltage or on the AC side of the inverter. Examples include water heating or charging an electric car. The original heaters will protect the MPPT and prevent overspeed in the event that these useful applications are disconnected for any reason.

Refer to drawing D.

Drawing A

Simple installation for runaway rpm < 2000. Only to be used where surplus power generation is unlikely or where these is no use for this surplus power.

Drawing B

Installation with a PowerClamp for runaway rpm > 2000. Can be used where surplus power generation is needed for heat or other purposes.

Drawing C

Installation with a Morningstar TS45/60 for runaway rpm > 2000. This is a lower cost option than with a PowerClamp. Can be used where surplus power generation is needed for heat (typically via a DC water element or air resistor)

Drawing D

Installation with a PowerClamp for higher voltage cable applications regardless of turbine runaway rpm. Surplus power generation is also desirable for heat or other purposes.

